
Arduino CAN-BUS Shield
User’s Manual

Introduction:
The CAN-Bus Shield provides your Arduino or Red board with CAN-Bus capabilities and allows you to

hack your vehicle!

CAN-Bus Shield connected to a RedBoard.

This shield allows you to poll the ECU for information including coolant temperature, throttle

position, vehicle speed, and engine rpms. You can also store this data or output it to a screen to make

an in-dash project.

https://www.sparkfun.com/products/13262

Materials Required:
You will need the CAN-Bus Shield in order to follow along with this hookup guide.

Hardware Overview:
There are several features to be aware of on the CAN-Bus Shield.

CAN-Bus Shield with features labeled.

https://cdn.sparkfun.com/assets/learn_tutorials/3/8/0/Shield_Labeled.png

1. DB9 Connector

The primary hardware feature on this shield is the DB9 connector. This allows you to interface to

OBD-II ports with a DB9 to OBD-II cable.

2. GPS Connector

The GPS connector on-board is a 6-pin, JST SH compatible connector. The board is designed to

interface with either the EM-506 GPS Receiver, or the GP-735 GPS Receiver. The GND jumper

allows the user to modify the GPS connector for units that do not have a GND connection on pin 5 of

the connector.

3. LCD Connector

The LCD footprint on the shield is compatible with a male 3-pin JST connector and can interface with

any of our serial LCD screens. The connection is designed for 5V LCDs, so don't accidentally plug in a

3.3V option! The pin order is 5V, GND, and RX/D6 when looking at the shield straight on.

4. JoyStick

The joystick included on the shield provides a basic user interface for controlling screen displays or

selecting CAN scan settings. The connector gives 5 basic user options:

- Up

- Down

- Left

- Right

- Click selection

5. microSD Slot

This slot provides the user with the option of storing collected data onto a microSD card. Data

collected can include user input on the joystick, CAN-Bus information collected, LCD outputs, or

general I/O data.

6. Jumpers

There are six jumpers present on the CAN-Bus Shield.

- 6a. SJ1 and SJ2 - These two jumpers allow the user to select between UART and Software

Serial for the GPS unit to communicate with the Arduino.

- 6b. SJ3 - This allows the user to separate pin 5 on the GPS connector from the GND line. This

jumper comes closed by default.

- 6c. SJ4, SJ5, and SJ6 - These three jumpers allow the user to select the DB9 pin configuration

between OBD-II and CAN. The jumpers are defaulted to the OBD-II configuration that matches

SparkFun's OBD-II to DB9 cable.

Note: Though the pin configuration is labeled as OBD-II, this is still a *CAN-specific* device. The

jumpers are simply for configuring the shield to work with other OBD-II/CAN-Bus **cables** if

necessary.

For reference, here are the configuration options showing which pins are selected on the DB9

connector for each setting.

https://www.sparkfun.com/products/10087
https://www.sparkfun.com/products/9123
https://www.sparkfun.com/products/12751
https://www.sparkfun.com/products/13670
https://www.sparkfun.com/products/9915
https://www.sparkfun.com/products/10087

Jumper Configurations for DB9 Pins

Bus Lines CAN Pins OBD-II Pins Solder Jumper

CAN-H Pin 7 Pin 3 SJ4

CAN-L Pin 2 Pin 5 SJ6

GND Pin 3 Pin 2 SJ5

7. CAN Pins

4 CAN lines are broken out to allow you direct access to the raw CAN data coming off of the DB9

connector. These pins are:

• 5V

• GND

• CAN H (CAN HIGH)

• CAN L (CAN LOW)

Again, this data is raw coming off of the CAN-Bus. It has not been filtered through the MCP2515 or

the MCP2551 ICs.

Communication Methods:
Because of all of the different hardware features on the shield, there are a couple different

communication methods used.

- SPI - The MCP2515 IC and the microSD slot both communicate with the Arduino via the SPI lines.

The CAN “Chip Select” line is located on “D10”. The SD “Chip Select” line is connected to “D9”.

- Analog In - The joystick is connected to pins A1-A5 on the Arduino. Each direction of the joystick

has its own analog input.

- Software Serial/UART - The LCD and GPS both communicate over serial lines with the Arduino.

The LCD's “RX” line connects to “D6”. The GPS either connects via Software Serial to “D4” and “D5”,

or to the UART port on “D0” and “D1”.

Hardware Hookup:

Solder Connectors

To get your CAN-Bus shield hooked up, solder on the Arduino Stackable Headers.

You can use the RedBoard to hold the headers in place while soldering them to the shield.

Once those are soldered, consider how you want to connect your LCD screen. You can use either male

or female headers with 0.1" spacing, or the JST connector. Solder your interface choice onto the

shield at this time as well.

Make sure you solder the connector onto the top of the shield, so you can access it while the shield is

inserted in the RedBoard.

https://cdn.sparkfun.com/assets/learn_tutorials/3/8/0/HeadersInserted.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/3/8/0/LCDConnectionSoldered.jpg

Connect the Brain!

In our case, the brain will be the RedBoard. Insert your shield into the RedBoard. Take your time and

go slowly to prevent bending the header pins.

Connect the Extras

We recommend plugging in the GPS unit, LCD screen, and microSD card now. If you don't plan to use

any of these features, you can skip this step.

If you're planning on putting your CAN-Bus/RedBoard combination into an enclosure, you may want to

consider using an extension cable for the GPS unit. Enclosures can block the satellites from view and

lead to spotty GPS functionality, so placing the GPS unit outside of any enclosures should alleviate

those issues.

Note: If you are not using the EM-506, verify the pinout of your GPS unit and make sure the GND

jumper is in the proper configuration for your unit.

We also recommend connecting your LCD screen at this time. Your method of connecting the LCD

screen will depend on what connector you soldered onto the shield previously. Looking the shield

straight on, the connections are 5V, GND, and TX, if you are not using the JST connector.

Make sure you use a formatted microSD card. Once all the extras are connected, your circuit should

look like the following:

Connect to your CAN-enabled device

This can be a simulator or a vehicle. Plug the DB9 connector into the shield, and plug the DLC

connector into the device to which you plan on talking. If your shield+Arduino turns on now, that's ok.

The vehicle/simulator can power the board over the cable.

Final Circuit

Once everything is inserted, your circuit should look similar to the following:

https://www.sparkfun.com/products/9123
https://cdn.sparkfun.com/assets/learn_tutorials/3/8/0/GPSInserted.jpg

In this case, we show the circuit connected to a CAN simulator. However, you could instead have your

circuit connected to a DLC in a CAN-enabled vehicle.

Here we see the circuit connected to Pete Dokter's VW.

Arduino Library Installation:
Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If

this is your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you

have not previously installed an Arduino library, please check out our installation guide.

https://www.sparkfun.com/news/tags/according-to-pete
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://cdn.sparkfun.com/assets/learn_tutorials/3/8/0/ConnectedToSimulator.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/3/8/0/ConnectedToDash.jpg

There's a really great library available for working with the CAN-Bus shield. You will need to

download this and install it in your Arduino IDE. You can either search for it in the Arduino Library

Manager or download the most recent version from the GitHub repository by downloading the library

from the button below.

Example Code

 Heads up! The following examples are a demonstration of the CAN-Bus shield's capabilities to get

started. Depending on your particular vehicle's parameter identification (PID), the code may need to be

adjusted accordingly (i.e. check the Canbus.h file). Additionally, make sure that CAN-bus shield is

compatible with the communication protocol of your particular car's model.

There are several different example sketches included in the library, each with different

functionality.

1. SparkFun_CAN_Demo - This sketch allows you test the CAN functionality of the board by

itself.

2. SparkFun_ECU_Demo - This sketch runs all hardware on the shield together, and logs CAN

data and GPS data to the SD card, while outputting data over the serial LCD. You will need to

instally the TinyGPS library and the SD library for this to work.

3. SparkFun_GPS_Demo- This sketch runs through using the GPS module. You will need to

instally the TinyGPS library for this to work.

4. SparkFun_Joystick_Demo - This quick sketch allows you to test the functionality of the on-

board joystick.

5. SparkFun_SD_Demo - This sketch allows you to verify and test functionality of the microSD

socket on board. You will need to install the SD library for this to work.

6. SparkFun_SerialLCD_Demo - A quick sketch to make sure your serial LCD screen is

functioning properly.

7. CAN_Read_Demo - A very stripped-down sketch to read any and all data coming out of the

CAN bus.

8. CAN_Write_Demo - A basic demo for writing to the CAN bus.

Note: Examples 7 and 8 are courtesy of Stephen McCoy- a SparkFun customer. You can find

Stephen's original tutorial on Instructables:

IN S TR U C T AB L E S .C OM : C A R T O AR D U IN O C OM M UN ICA T IO N - C AN BU S SN IF F ING A ND

B R OA DC A ST IN G WITH A R DU INO

For our example, we are going to run through the ECU_Demo sketch, but feel free to use or modify

the other sketches. If you decided to not plug in the microSD card, GPS unit and LCD screen, you

should instead run the CAN_Demo.

https://github.com/sparkfun/SparkFun_CAN-Bus_Arduino_Library
https://github.com/sparkfun/SparkFun_CAN-Bus_Arduino_Library/blob/ffcd67b7f4d5112f747f7c74a8677ef82a4ee202/src/Canbus.h#L22
https://learn.sparkfun.com/tutorials/getting-started-with-obd-ii#obd-ii-protocols
https://github.com/mikalhart/TinyGPS
https://github.com/arduino/Arduino/tree/master/libraries/SD
https://github.com/mikalhart/TinyGPS
https://github.com/arduino/Arduino/tree/master/libraries/SD
http://www.instructables.com/id/CAN-Bus-Sniffing-and-Broadcasting-with-Arduino/
http://www.instructables.com/id/CAN-Bus-Sniffing-and-Broadcasting-with-Arduino/

ECU_Demo

This sketch shows off the basic functionality of each part of the shield. Once you've installed the

library, open up Arduino and upload this code to your RedBoard.

Check through the comments in the code for details of what each section does, but the general flow

of the sketch is as follows:

1. The Arduino initializes the pins, variables, and baud rates for the GPS, LCD, uSD card, and

CAN-Bus.

2. In the setup loop, each device is started, and verified that everything is connected as it

should. Both the CAN-Bus and uSD card will print either success or failure messages to the

LCD screen.

3. The shield will wait for the user to click the joystick to begin collecting data off of the GPS

module and the CAN-Bus.

4. Once the user has clicked to begin logging, the CAN-Bus will poll for the engine RPM, and will

write the latitude, longitude, and GPS speed. A message that the unit is logging will appear on

the LCD screen, and the actual engine RPM will be printed to the Serial monitor. The data

collected is written to the uSD card.

5. Each loop, the code checks if the user has clicked the joystick. If so, the unit stops logging.

COPY CODE

 /**

 ECU CAN-Bus Reader and Logger

 Toni Klopfenstein @ SparkFun Electronics

 September 2015

 https://github.com/sparkfun/CAN-Bus_Shield

 This example sketch works with the CAN-Bus shield from SparkFun Electronics.

 It enables reading of the MCP2515 CAN controller and MCP2551 CAN-Bus driver.

 This sketch also enables logging of GPS data, and output to a serial-enabled LCD screen.

 All data is logged to the uSD card.

 Resources:

 Additional libraries to install for functionality of sketch.

 -SD library by William Greiman. https://github.com/greiman/SdFat

 Development environment specifics:

 Developed for Arduino 1.65

 Based off of original example ecu_reader_logger by:

 Sukkin Pang

 SK Pang Electronics www.skpang.co.uk

 This code is beerware; if you see me (or any other SparkFun employee) at the local,

 and you've found our code helpful, please buy us a round!

 For the official license, please check out the license file included with the library.

 Distributed as-is; no warranty is given.

 ***/

 //Include necessary libraries for compilation

 #include <spi.h>

 #include <sd.h>

 #include <softwareserial.h>

 #include <canbus.h>

 #include <tinygps.h>

 //Initialize uSD pins

 const int chipSelect = 9;

 //Initialize lcd pins

 SoftwareSerial lcd(3, 6);

 //Initialize GPS pins

 SoftwareSerial uart_gps(4,5);

 // Define Joystick connection pins

 #define UP A1

 #define DOWN A3

 #define LEFT A2

 #define RIGHT A5

 #define CLICK A4

 //Define LED pins

 #define LED2 8

 #define LED3 7

 //Define baud rates. GPS should be slower than serial to ensure valid sentences coming thro

ugh

 #define GPSRATE 4800

 #define LCD_Rate 115200

 //Create instance of TinyGPS

 TinyGPS gps;

 //Declare prototype for TinyGPS library functions

 void getgps(TinyGPS &gps);

 //Declare GPS variables

 float latitude;

 float longitude;

 int year;

 byte month;

 byte day;

 byte hour;

 byte minute;

 byte second;

 byte hundredths;

 float gps_speed;

 //Declare SD File

 File dataFile;

 //Declare CAN variables for communication

 char *EngineRPM;

 char buffer[64]; //Data will be temporarily stored to this buffer before being written to

the file

 //Define LCD Positions

 #define COMMAND 0xFE

 #define CLEAR 0x01

 #define LINE1 0x80

 #define LINE2 0xC0

 //********************************Setup Loop*********************************//

 void setup() {

 //Initialize Serial communication for debugging

 // Serial.begin(9600);

 //Serial.println("ECU Demo");

 //Begin LCD serial communication

 lcd.begin(9600);

 //Begin GPS communcation

 uart_gps.begin(GPSRATE);

 //Initialize pins as necessary

 pinMode(chipSelect, OUTPUT);

 pinMode(CLICK,INPUT);

 pinMode(LED2, OUTPUT);

 pinMode(LED3, OUTPUT);

 //Pull analog pins high to enable reading of joystick movements

 digitalWrite(CLICK, HIGH);

 //Write LED pins low to turn them off by default

 digitalWrite(LED2, LOW);

 digitalWrite(LED3, LOW);

 //Initialize CAN Controller

 if(Canbus.init(CANSPEED_500)) /* Initialize MCP2515 CAN controller at the specified spee

d */

 {

 clear_lcd();

 lcd.print("CAN Init ok");

 //Serial.println("CAN Init Ok");

 delay(1500);

 }

 else

 {

 lcd.print("Can't init CAN");

 //Serial.println("Can't init CAN");

 return;

 }

 //Check if uSD card initialized

 if (!SD.begin(chipSelect)) {

 //Serial.println("uSD card failed to initialize, or is not present");

 clear_lcd();

 lcd.print("uSD failed.");

 return;

 }

 else{

 //Serial.println("uSD card initialized.");

 clear_lcd();

 lcd.print("uSD success!");

 delay(1500);

 }

 //Print menu to LCD screen

 clear_lcd();

 lcd.print("Click to begin");

 lcd.write(COMMAND);

 lcd.write(LINE2);

 lcd.print("Logging Data");

 while(digitalRead(CLICK)==HIGH)

 {

 //Wait for user to click joystick to begin logging

 }

 delay(1000);

 }

 //********************************Main Loop*********************************//

 void loop(){

 while(digitalRead(CLICK)==HIGH){

 digitalWrite(LED3, HIGH); //Turn on LED to indicate CAN Bus traffic

 Canbus.ecu_req(ENGINE_RPM,buffer); //Request engine RPM

 EngineRPM = buffer;

 //Serial.print("Engine RPM: "); //Uncomment for Serial debugging

 //Serial.println(buffer);

 delay(100);

 digitalWrite(LED3, LOW); //Turn off LED3

 delay(500);

 File dataFile = SD.open("data.txt", FILE_WRITE); //Open uSD file to log data

 //If data file can't be opened, throw error.

 if (!dataFile){

 clear_lcd();

 lcd.print("Error opening");

 lcd.write(COMMAND);

 lcd.write(LINE2);

 lcd.print("data.txt");

 while(1);

 }

 clear_lcd();

 lcd.print("Logging.Click");

 lcd.write(COMMAND);

 lcd.write(LINE2);

 lcd.print("to stop logging");

 if(uart_gps.available()) // While there is data on the RX pin...

 {

 digitalWrite(LED2, HIGH); //Signal on D8 that GPS data received.

 //Print Latitude/Longitude to SD card

 dataFile.print("Lat/Long: ");

 dataFile.print(latitude,5);

 dataFile.print(", ");

 dataFile.println(longitude,5);

 // Print data and time to SD card

 dataFile.print("Date: "); dataFile.print(month, DEC); dataFile.print("/");

 dataFile.print(day, DEC); dataFile.print("/"); dataFile.print(year);

 dataFile.print(" Time: "); dataFile.print(hour, DEC); dataFile.print(":");

 dataFile.print(minute, DEC); dataFile.print(":"); dataFile.print(second, DEC);

 dataFile.print("."); dataFile.println(hundredths, DEC);

 //Print GPS speed to SD card

 dataFile.print("GPS Speed(kmph): ");

 dataFile.println(gps_speed);

 digitalWrite(LED2, LOW); //Turn off D8 LED.

 }

 dataFile.print("Engine RPM: ");

 dataFile.println(EngineRPM);

 dataFile.println();

 dataFile.flush();

 dataFile.close(); //Close data logging file

 }

 clear_lcd();

 lcd.print("Logging stopped.");

 while(1); //Stop logging if joystick is clicked

 }

 //********************************LCD Functions*********************************//

 void clear_lcd(void)

 {

 lcd.write(COMMAND);

 lcd.write(CLEAR);

 }

 //********************************GPS Functions*********************************//

 void getgps(TinyGPS &gps)

 {

 // Receive GPS latitude/longitude

 gps.f_get_position(&latitude, &longitude);

 //Call function to receive date and time from GPS

 gps.crack_datetime(&year,&month,&day,&hour,&minute,&second,&hundredths);

 //Also collect gps_speed

 gps_speed = gps.f_speed_kmph();

 }

</tinygps.h></canbus.h></softwareserial.h></sd.h></spi.h>

If you've uncommented the lines for serial debugging, you should see something like this:

Engine RPM readings from CAN-Bus shield hooked up to a simulator.

Once you have collected some readings, you can pull your uSD card out and take a look at the data

recorded. There should be a file on your uSD card called "DATA.TXT", and it should include

information like the following:

https://cdn.sparkfun.com/assets/learn_tutorials/3/8/0/SerialMonitorOutput.JPG

Note: If you're only recording blank readings for your GPS, as shown above, make sure you have your

GPS unit in an area with a good satellite view.

Once you've verified data is being stored to the uSD card, you're good to go! You've successfully

interfaced with your vehicle's CAN-Bus and can now start digging into diagnostic codes and building

projects around your engine's data.

Resources and Going Further:
Once you've gotten the basic functionality of the CAN-Bus shield working, you can start hacking your

car and interfacing your own electronics to your vehicle. Try checking out different PIDs on the

CAN-Bus with your vehicle, or see if you can interface the CAN-Bus to control LEDs, speakers, and

more!

https://cdn.sparkfun.com/assets/learn_tutorials/3/8/0/uSDRecordedData.JPG

