
Supply voltage to the coil and some currents will pass through the coil thus generating the electromagnetic
effect. So the armature overcomes the tension of the spring and is attracted to the core, thus closing the
moving contact of the armature and the normally open (NO) contact or you may say releasing the former
and the normally closed (NC) contact. After the coil is de-energized, the electromagnetic force disappears
and the armature moves back to the original position, releasing the moving contact and normally closed
contact. The closing and releasing of the contacts results in power on and off of the circuit.

Operating Principle:

See the picture below: A is an electromagnet, B armature, C spring, D moving contact, and E fixed contacts.
There are two fixed contacts, a normally closed one and a normally open one. When the coil is not energized,
the normally open contact is the one that is off, while the normally closed one is the other that is on.

IN1: Signal triggering terminal 1 of relay module

Input:

VCC : Connected to positive supply voltage (supply power according to relay voltage)

GND : Connected to supply ground.

IN2: Signal triggering terminal 2 of relay module

Arduino Module Relay 5V 2 Channel
User Manual

Testing Setup:

When a low level is supplied to signal terminal of the 2-channel relay, the LED at the output terminal will
light up. Otherwise, it will turn off. If a periodic high and low level is supplied to the signal terminal, you
can see the LED will cycle between on and off.

For Arduino：

Step 1：

Connect the signal terminal IN1、IN2 of 2-channel relay to digital pin 4 & 5 of the Arduino Uno or
ATMega2560 board, and connect an LED at the output terminal.

IN1> 4

IN2> 5

Step 2:

Upload the sketch "text_code" to the Arduino Uno or ATMega2560 board.Then you can see the LED cycle
between on and off.

The actual figure is shown below:

For raspberry Pi:

Output:

Each module of the relay has one NC (normally close), one NO (normally open) and one COM (Common)
terminal. So there are 2 NC, 2 NO and 2 COM of the channel relay in total. NC stands for the normal close
port contact and the state without power. NO stands for the normal open port contact and the state with
power. COM means the common port. You can choose NC port or NO port according to whether power or
not.

Step1:

Connect the signal terminal IN2、IN1 of 2-channel relay to port 17、18 of the Raspberry Pi, and connect an
LED at the output terminal.

IN2 > 17

IN1 > 18

Step 2:

Run the “test_code”. Then you can see the LED cycle between on and off.

Sketch for Arduino:

/**
 Name：_2_channel_relay
 Description: control the 2 channel relay module to ON or OFF
 Website: www.handsontec.com
 Email: techsupport@handsontec.com
***/

//the relays connect to
int IN1 = 4;
int IN2 = 5;

#define ON 0
#define OFF 1

void setup()
{
 relay_init();//initialize the relay
}

void loop() {
 relay_SetStatus(ON, OFF);//turn on RELAY_1

 delay(2000);//delay 2s
 relay_SetStatus(OFF, ON);//turn on RELAY_2
 delay(2000);//delay 2s
}
void relay_init(void)//initialize the relay
{
 //set all the relays OUTPUT
 pinMode(IN1, OUTPUT);
 pinMode(IN2, OUTPUT);
 relay_SetStatus(OFF, OFF); //turn off all the relay
}
//set the status of relays
void relay_SetStatus(unsigned char status_1, unsigned char status_2)
{
 digitalWrite(IN1, status_1);
 digitalWrite(IN2, status_2);
}

Code for Raspberry Pi:

#!/usr/bin/env python
'''
**
* Filename : 2_channel_relay.py
* Description : a sample script for 2-Channel High trigger Relay
* E-mail : techsupport@handsontec.com
* Website : www.handsontec.com
* Detail : New file
**
'''
import RPi.GPIO as GPIO
from time import sleep

Relay_channel = [17, 18]

def setup():
 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(Relay_channel, GPIO.OUT, initial=GPIO.LOW)
 print "|===|"
 print "| 2-Channel High trigger Relay Sample |"
 print "|---|"
 print "| |"
 print "| Turn 2 channels on off in orders |"
 print "| |"
 print "| 17 ===> IN2 |"
 print "| 18 ===> IN1 |"
 print "| |"
 print "| |"
 print "|===|"

def main():
 while True:
 for i in range(0, len(Relay_channel)):

print '...Relay channel %d on' % i+1
GPIO.output(Relay_channel[i], GPIO.HIGH)
sleep(0.5)
print '...Relay channel %d off' % i+1
GPIO.output(Relay_channel[i], GPIO.LOW)
sleep(0.5)

def destroy():
 GPIO.output(Relay_channel, GPIO.LOW)
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

