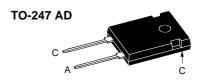
Fast Recovery Epitaxial Diode (FRED)



 $I_{FAVM} = 52 A$ $V_{RRM} = 1200 V$ $t_{rr} = 40 \text{ ns}$

\mathbf{V}_{RSM}	$\mathbf{V}_{\mathtt{RRM}}$	Туре
V	V	
1200	1200	DSEI 60-12A

A = Anode, C = Cathode

Symbol	Test Conditions	Maximum Ratings	
I _{FRMS}	$T_{VJ} = T_{VJM}$	100	A
I _{FAVM} ①	$T_{\rm c} = 60^{\circ}$ C; rectangular, d = 0.5	52	Α
I _{FRM}	t_{p} < 10 μ s; rep. rating, pulse width limited by T_{VJM}	800	Α
FSM	$T_{VI} = 45^{\circ}C;$ t = 10 ms (50 Hz), sine	500	A
	t = 8.3 ms (60 Hz), sine	540	Α
	$T_{VI} = 150^{\circ}\text{C}; t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	450	A
	t = 8.3 ms (60 Hz), sine	480	Α
l²t	$T_{yy} = 45^{\circ}C$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	1250	A ² s
	t = 8.3 ms (60 Hz), sine	1200	A^2s
	$T_{\text{VI}} = 150^{\circ}\text{C}; t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	1000	A ² s
	t = 8.3 ms (60 Hz), sine	950	A ² s
T _{vJ}		-40+150	°C
T _{vJM}		150	°C
T _{stg}		-40+150	°C
P _{tot}	T _C = 25°C	189	W
M _d	Mounting torque	0.81.2	Nm
Weight		6	g

Symbol	Test Conditions	Characteristic Values		
		typ.	max.	
I _R	$\begin{array}{lll} T_{\text{VJ}} = 25^{\circ}\text{C} & \text{V}_{\text{R}} = \text{V}_{\text{RRM}} \\ T_{\text{VJ}} = 25^{\circ}\text{C} & \text{V}_{\text{R}} = 0.8 \bullet \text{V}_{\text{RRM}} \\ T_{\text{VJ}} = 125^{\circ}\text{C} & \text{V}_{\text{R}} = 0.8 \bullet \text{V}_{\text{RRM}} \end{array}$		2.2 0.5 14	mA mA
V _F	$I_F = 60 \text{ A};$ $T_{VJ} = 150^{\circ}\text{C}$ $T_{VJ} = 25^{\circ}\text{C}$		2.0 2.55	V V
$\mathbf{V}_{_{\mathbf{T}0}}$ $\mathbf{r}_{_{\mathbf{T}}}$	For power-loss calculations only $T_{VJ} = T_{VJM}$		1.65 8.3	$\begin{matrix} V \\ m\Omega \end{matrix}$
R_{thJC} R_{thCK} R_{thJA}		0.25	0.66 35	K/W K/W K/W
t _{rr}	$I_F = 1 \text{ A}; -\text{di/dt} = 200 \text{ A/}\mu\text{s}; V_R = 30 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$	40	60	ns
I _{RM}	$V_R = 540 \text{ V}; I_F = 60 \text{ A}; -di_F/dt = 480 \text{ A}/\mu\text{s}$ $L \le 0.05 \mu\text{H}; T_{VJ} = 100^{\circ}\text{C}$	32	36	Α

 $[\]oplus$ I $_{\rm FAVM}$ rating includes reverse blocking losses at T $_{\rm V,JM},~{\rm V_R}$ = 0.8 V $_{\rm RRM},$ duty cycle d = 0.5 Data according to IEC 60747

Features

- International standard package JEDEC TO-247 AD
- Planar passivated chips
- Very short recovery time
- Extremely low switching losses
- Low I_{RM}-values
- Soft recovery behaviour
- · Epoxy meets UL 94V-0

Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- · Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Advantages

- · High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- · Low losses
- Operating at lower temperature or space saving by reduced cooling

IXYS reserves the right to change limits, test conditions and dimensions