MR760

High Current Lead Mounted Rectifiers

- Current Capacity Comparable to Chassis Mounted Rectifiers
- Very High Surge Capacity
- Insulated Case

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 2.5 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Lead is Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Cathode Polarity Band
- Shipped 1000 units per plastic bag. Available Tape and Reeled, 800 units per reel by adding a "RL" suffix to the part number

MAXIMUM RATINGS

Please See the Table on the Following Page

HIGH CURRENT LEAD MOUNTED SILICON RECTIFIERS 50 – 1000 VOLTS DIFFUSED JUNCTION

ORDERING INFORMATION

Device	Package	Shipping		
MR750	Axial Lead	1000 Units/Bag		
MR750RL	Axial Lead	800/Tape & Reel		
MR751	Axial Lead	1000 Units/Bag		
MR751RL	Axial Lead	800/Tape & Reel		
MR752	Axial Lead	1000 Units/Bag		
MR752RL	Axial Lead	800/Tape & Reel		
MR754	Axial Lead	1000 Units/Bag		
MR754RL	Axial Lead	800/Tape & Reel		
MR756	Axial Lead	1000 Units/Bag		
MR756RL	Axial Lead	800/Tape & Reel		
MR760	Axial Lead	1000 Units/Bag		
MR760RL	Axial Lead	800/Tape & Reel		

MR750 SERIES

MAXIMUM RATINGS

Characteristic	Symbol	MR750	MR751	MR752	MR754	MR756	MR760	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	1000	Volts
Non–Repetitive Peak Reverse Voltage (Halfwave, single phase, 60 Hz peak)	V _{RSM}	60	120	240	480	720	1200	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	700	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz) See Figures 5 and 6	Ι _Ο							Amps
Non–Repetitive Peak Surge Current (Surge applied at rated load conditions)	I _{FSM}	<					Amps	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	← 65 to +175 →					°C	

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage Drop $(i_F = 100 \text{ Amps}, T_J = 25^{\circ}\text{C})$	VF	1.25	Volts
Maximum Forward Voltage Drop ($I_F = 6.0 \text{ Amps}, T_A = 25^{\circ}C, 3/8'' \text{ leads}$)	V _F	0.90	Volts
Maximum Reverse Current $T_J = 25^{\circ}C$ (Rated dc Voltage) $T_J = 100^{\circ}C$	۱ _R	25 1.0	μA mA