


Arduino Light Sensor (Analog/Digital) User Manual

How to use:

- Photosensitive resistor module most sensitive to environmental light intensity is generally used to detect the ambient brightness and light intensity.
- Module light conditions or light intensity reach the set threshold, DO port output high, when the external ambient light intensity exceeds a set threshold, the module D0 output low;
- Digital output D0 directly connected to the MCU, and detect high or low TTL, thereby detecting ambient light intensity changes;
- Digital output module D0 can directly drive the relay module, which can be composed of a photoelectric switch;
- Analog output module AO and AD modules can be connected through the AD converter, you can get a more accurate light intensity values

This light sensor uses a Cadmium Sulphide Photoresistor as a sensor. It then amplifies the signal and outputs:

- Analog Data: The VALUE of the light (0 to 1023) with more light giving lower numbers
- Digital Data: A LOW signal when the light is brighter than the set point.

NOTE: The pin out of this brick is NOT the same as our standard 3-pin cables. Above, you will see the connections are VCC (+5v), GND, DO (Digital Output) and AO (Analog Output). Use separate wires taken from a Cable Maker strip). Or a Flat-to-Separate Cable.

This module has a dual personality. It looks at the light level falling on it's sensor and outputs that as a varying *analog* signal. Then it compares that value with the setting you make with the adjustable blue potentiometer. If the light level is higher than your set point, the *digital* output goes LOW. It uses a LM393 Comparator chip for clean outputs.

Here is a sample Software Sketch you can cut and paste to test it. You can use it to set your setpoint:

```
/* YourDuino Electronic Brick Test:
Light Sensor Analog + Digital AB-890202
terry@yourduino.com */

/*-----( Declare Constants )-----*/
#define ANALOG_SENSOR_PIN_A0
#define DIGITAL_SENSOR_PIN_3
#define LEDPIN_13 // The onboard LED

/*-----( Declare Variables )-----*/
int_switch_state; /* Holds the last digital value */
int_LightAnalogValue; /* Holds the last analog value */

void setup() /*----( SETUP: RUNS ONCE )----*/
{
pinMode(LEDPIN, OUTPUT);
Serial.begin(9600); // Enable the Serial data output
```

```
Serial.println("YourDuino Light Sensor Test 1.10 ");
}/*--(end setup )---*/
void loop() /*----(LOOP: RUNS CONSTANTLY )----*/
// This module is ACTIVE LOW when a reflection is seen
{
 switch_state = digitalRead(DIGITAL_SENSOR_PIN);
 if (switch_state == LOW)
  digitalWrite(LEDPIN, HIGH);
  Serial.println("Digital Signal ON ");
 else
  digitalWrite(LEDPIN, LOW);
 LightAnalogValue = analogRead(ANALOG_SENSOR_PIN); //Read the voltage from sensor
 Serial.print("Analog Value (0 to 1023)");
 Serial.println(LightAnalogValue,DEC); // Send result to Serial Monitor
 delay(500);
}/* --(end main loop )-- */
/* ( THE END ) */
```